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A simple fluid-flow model of ground effect on hovering 
By JAMES LIGHTHILL 

(Received 5 January 1979) 

Hovering motions, by which an animal (or a helicopter) in stationary fluid generates 
a downflow to support its weight, entail energy costs that include the induced power 
(power supplied to that downflow). The simplest classical model for induced power is 
the actuator-disk model. This paper shows how a relatively insignificant modification 
can be made to that model to make it aerodynamically self-consistent. The modified 
simple model of the downflow may be evaluated in fluid that either is unbounded or is 
bounded below by horizontal ground. Comparison of the calculated induced powers 
in the two cases (even though made in this paper not for the true axisymmetric flow 
patterns but for the corresponding two-dimensional flow patterns) appears to give a 
more satisfactory analysis than was previously available of the observed reduction of 
induced power associated with proximity to the ground. 

1. Introduction 
It is well known that aerodynamic lift in forward motion carries an induced-drag 

penalty which is reduced near the ground. This ‘ground effect’ (significant in the 
performance of aircraft over a runway or of aquatic birds over a water surface) is well 
understood aerodynamically: wing downwash induced by trailing vortices is mitigated 
as a result of upwash induced by their ‘images ’ in the ground. 

It is equally well known that hovering in still air carries an induced-power penalty 
which is reduced near the ground (Zbrozek 1950; Bramwell 1976, pp. 101-3). This 
‘ground effect on hovering’ was vital to early helicopters, many of which were 
inadequately powered for hovering to be possible except close to the ground. On the 
other hand, aerodynamic understanding of ground effect on hovering is far less 
developed than for forward flight; perhaps, because of its reduced significance for 
modern helicopters with their good power-weight ratios. 

More recent studies of animal hovering (Weis-Fogh 1973; Lighthill 1977) give a 
special emphasis to induced power as setting the main upper limit on size for animals 
capable of sustained hovering. I n  comparison, power required to overcome the 
frictional resistance to wing motions is subject to different scaling, so that it is important 
for smaller insects, while induced power dominates for birds and bats and larger 
insects. I n  the meantime, the power that can be exerted in aerobic conditions (that is, 
in sustained effort where oxygen supply is the limiting factor) has an opper limit of the 
order of 200 W per kg of muscle in insects, birds and bats; accordingly, the observed 
upper limit (around 0.02 kg) on the mass of animals capable of sustained hovering in 
still airt (in all three groups) is ascribed to induced power increasing faster than in 
proportion to the weight supported. 

wind. 
Not, of course, to be confused with the ability of (say) kestrels to stey motionless in e light 
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On the other hand, larger flying animals are frequently observed to use the motions 
of hovering to support their weight for just very brief periods. For example, the 
majority of terrestrial birds in both take-off and landing make a few strokes of a 
‘normal hovering ’ motion with nearly horizontal wing beats to give weight support as 
either forward acceleration commences or deceleration is completed (Lighthill 1975). 
Furthermore, many birds respond to various ‘emergencies ’ in flight by a brief ‘ burst ’ 
of hovering motion. Of course, muscle power output in the anaerobic conditions of 
‘burst’ activity can reach values around 3 times the maximum sustainable output, 
and this is recognized as the principal factor allowing relatively larger birds to hover 
for brief periods. At a more refined level, however, it is desirable to distinguish between 
(i) birds for which bursts of hovering activity are possible independently of ground 
effect and (ii) birds possessing such ability only in the presence of a significant reduction 
of induced power due to  ground effect. 

Fish behaviour, too, may be influenced by ground effect on hovering. Many bottom- 
living fishes are able to support their excess of weight over buoyancy by pectoral-fin 
motions analogous to the wing motions of animals hovering in air. Blake (1979) 
observed how common were extended periods of such hovering immediately above the 
bottom. He related this to the advantages of hovering for observing both prey and 
predators (and for allowing a ready response in either case by rapid accelerations), 
combined with a reduction of power requirements due to ground effect. 

The present study was motivated principally by a desire to refine the above 
animal-locomotion discussion; but also, secondarily, by a feeling that the well- 
established but inadequately understood existence of a substantial ground effect 
reducing hovering induced power must be regarded as a challenge to analyse the 
phenomenon by means of a suitable aerodynamic model. 

We must not expect such a model to be a simple extension of the classic model for 
ground effect in forward flight, since hovering is of a different aerodynamic nature. 
Indeed, the main previous attempt a t  a model (Knight & Hefner 1941) uses a rather too 
closely parallel approach: i t  concentrates on the vortices generated a t  the tips of the 
rotor blades, and assumes that they lie on a vertical cylinder bounding the rotor slip- 
stream; essentially, just as they would in the absence of ground. It is then the images of 
those vortices in the ground which are taken to generate an upwash a t  the rotor disk 
and so reduce the induced power. Aerodynamically, the model is unsatisfactory 
because it allows for no growth in the diameter of the slipstream as it approaches the 
ground;t yet induced power is known to be highly sensitive to change in slipstream 
diameter; as, indeed, the model described in the next section will re-emphasize. 

2. Model selection, assumptions and results 
I n  order to obtain a satisfactory model of ground effect on the reduction of hovering 

induced power, it  is essential to start from a model for induced power in the absence of 
ground that satisfies two conditions: 

(i) it is aerodynamically self-consistent; 
(ii) it is simple enough to be still usable with the ground added. 

Under these conditions, the ratio C, between the induced-power penalty for supporting 

t Evidently, any vorticity near the ground must suffer a large outward movement, induced 
both by vortices near the rotor and by their images. 
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FIGURE 1. I n  this classical axisymmetric model, the slipstream from the 

actuator disk of area S becomes a vertical jet of reduced area A .  

a given weight with and without ground effect may be adequately inferred even if 
the model’s simplicity makes absolute induced powers somewhat in error. 

The classical model for hovering induced power which most obviously offers the 
advantage of simplicity is the actuator-disk model. That model has the additional 
advantage for the purposes outlined in 9 1 that it  is applicable equally to helicopter 
hovering and animal hovering. The spinning rotor, or else the animal’s oscillating 
wings or fins, is in each case represented as a disk of radius the semi-span s, from which 
a well-defined slipstream emerges. The slipstream has acquired a total headt in excess 
of that of the ambient fluid; which, in turn, in the region adjacent to the slipstream, 
remains essentially undisturbed (figure 1) .  

The theory, easy to work out for any radial distribution of total head in the slip- 
stream, is known to give minimum induced power in the simplest case: when the total 
head in the slipstream is uniform (Glauert 1935). This simple model corresponds to the 
assumption that all fluid crossing the disk receives a uniform increase of pressure, 
equal to the disk loading: 

Ap = w/s, (1) 

where W is the weight supported and S = m2 is the disk area. 
I n  that case we may define a velocity U such that 

Ap = *pu=, (2) 

where p is the density of the fluid. This increase (2) in total head above that of the 
ambient fluid then implies that slipstream fluid immediately adjacent to (and therefore 
at the same pressure as) undisturbed ambient fluid is moving at speed U .  

Admittedly, near the actuator disk, streamline curvature may allow transverse 
pressure gradients across streamlines, so that the uniform total head need not there 
imply a uniform fluid speed. Far below the actuator disk, however, such curvature must 

t Throughout this paper the common expression ‘total head’ is used for the Bernoulli 
constant, obtained by adding the pressure to the fluid energy (kinetic plus potential) per unit 
volume. 
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disappear (figure l),  and the slipstream become a vertical jet of velocity U and 
cross-section 

A = gS; (3) 

a value inferred from (1) and (2) and the requirement 

pU2A = W 

that the jet’s momentum flux pU2A must exactly support the weight W. 
Next, the volume flow Q in the slipstream is given as 

(4) 

Q =  UA.  ( 5 )  

Finally, the induced power pi (rate of working on the slipstream by the actuator 

(6) 
disk) is 

pi = ( A P ) Q ,  

a result which equations (1) to (5) allow us to rewrite in the well-known form 

F!Jw = *u = (W/2pS)i,  (7) 

usually taken to represent a lower limit for induced power per unit supported weight. 
Note that this increases as the square root of the disk loading W/S; which in turn, 
for geometrically similar systems, increases progressively with size, producing in 
hovering animals the intensification of induced-power problems as a function of size 
referred to in 9 1. 

The actuator-disk model, being axisymmetric, can be regarded as a model of the 
flow with all azimuthal variations smoothed out. This means that the slipstream flow, 
as a steady axisymmetric motion with uniform total head, is necessarily irrotational; 
a conclusion readily proved from ‘ Crocco’s relation’ (see, for example, Batchelor 1967, 
p. 160)) which equally shows that the slipstream boundary (a discontinuity of total 
head) is a vortex sheet. Physically, this is because the assumption of uniform disk 
loading requires the rotor blades (or wings, or fins) to shed trailing vorticity only a t  
their tips. A smoothed effect of that complex pattern of tip vortices is the actuator- 
disk-theory vortex sheet, of uniform strength U .  

On the other hand, the contraction of that vortex sheet from the disk area S to a 
reduced cross-section A represents a real phenomenon, observable by flow visualization 
(Bramwell 1976, p. 118). Similarly, more accurate theories of the vorticity pattern 
predict that such a contraction occurs; see Theodorsen (1969) for the helical vortex 
pattern shed by a rotor, or Rayner (1979) for the stack of vortex rings shed by a 
hovering animal. Typical departures from the value (7) for induced power, either as 
measured, or as calculated in these more complicated theories, are of the order of 
10-20 per cent. 

The above considerations suggest as a potentially useful goal the extension of 
actuator-disk theory to allow for the presence of horizontal ground at  a height h below 
the disk. The object would be to calculate, for support of a fixed weight W ,  the ratio 

induced power with ground effect 
- induced power without ground effect 

c -  

as a function of the ratio h/s of height to semi-span. Before that programme can be 
carried out, however, one small refinement of classical actuator-disk theory is needed, 
to make it aerodynamically self-consistent. 
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FIGURE 2. An aerodynamically self-consistent form of 
the axisymmetric actuator-disk model. 

The reason for this is as follows. No new fluid is created at  the actuator disk; which, 
indeed, is a source not of mass flux but of momentum flux. Thus, the whole volume 
flow Q emerging in the slipstream has been drawn from the general ambient fluid 
towards the disk’s upper side, and there given the total-head increase Ap.  This flow 
inward towards the disk’s upper side must be an irrotational motion (again, with 
uniform total head), which at  large distances from the disk has the character of an 
inwardly directed ‘sink’ flow.? Evidently, some of this inflow into the disk’s upper 
surface must come from the region below the disk. This, however, is inconsistent with 
the fact that motion of ambient fluid immediately outside the slipstream has been 
excluded in the theory’s assumptions. 

Quantitatively, this inconsistency may not be too significant, since the sink flow 
velocities fall off as the inverse square of the distance. We cannot, however, ignore the 
inconsistency: for one thing, its significance may be greatest in the important region 
of slipstream contraction; and, furthermore, an aerodynamically consistent theory 
should offer better chances for a proper incorporation of ground effect. 

Fortunately, the inconsistency in the model is eliminated rather easily by inserting 
an artificial boundary to shield the slipstream from the sink flow outside it. Out of all 
possible shapes of artificial boundary, one stands out as uniquely appropriate: 
a boundary in the form of a vertical cylinder (figure 2). The fluid motion, then, is the 
uniquely defined irrotational flow which emerges from the region outside that semi- 
infinite cylinder and, inside it, is bounded by a free stream surface on which the fluid 
speed has the constant value U .  

It might be imagined that such use of a vertical boundary in the model is responsible 
for the fact that some fluid approaches the actuator disk from below. In  reality, 
however, the whole concept of the actuator disk in still air requires some of the fluid 
entering the disk to approach it from below, and the introduction of the vertical 
boundary merely limits the region from which such fluid appears. 

The idea that the artificially introduced boundary must be vertical is first indicated 
by the required contraction ratio 4 (ratio of jet cross-section to disk area). This a t  once 
recalls ‘Borda-mouthpiece ’ flow (known to have contraction ratio i) which is exactly 
the flow illustrated in figure 2. Admittedly, the classical ‘Borda-mouthpiece’ flow 
(Lamb 1932, p. 25) is a motion of fluid all of which is at  a total head greater by $pU2 
than the undisturbed fluid adjacent to the jet. The flow of figure 2 is different in that 

t This inescapable conclusion for an actuator disk in stationary fluid differs, of course, from 
the corresponding conclusion in the other classical actuator-disk theory ; that for a propeller in 
a uniform stream. The motion towards the disk is there a combined sink-and-uniform-stream 
motion. 
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the increase in total head by &pU2 takes place only a t  the disk itself. However, both are 
irrotational motions satisfying identical boundary conditions; therefore, their stream- 
lines must be the same. 

Two arguments suggest why the artificially introduced boundary should indeed be 
taken vertical. First, i t  allows a satisfactorily extensive region of fluid (all the fluid 
outside the semi-infinite cylinder) to participate in the sink flow. The second, much 
more compelling argument is that a vertical boundary cannot impart any vertical 
force to  the fluid (or, indeed, in axisymmetric motion, any net force a t  all). There is 
therefore no disturbance to the basic assumption of actuator-disk theory, that  the only 
force applied to the fluid is that  associated with a uniform pressure difference BpU2 
applied right across the disk. 

It is worth repeating that the shape of the artificial boundary is significant only close 
to the disk (where suctions associated with acceleration towards the disk would allow 
a non-vertical boundary to exert a significant force). The actuator-disk model becomes 
aerodynamically satisfactory provided that a short piece of vertical-cylinder boundary 
is inserted near the disk. For full details of how the artificial boundary can best be 
represented in the model, see $3 .  

The discussion up to this point suggests that  an aerodynamically consistent model 
of ground effect on hovering will be obtained by calculating how the axisymmetric 
Borda-mouthpiece flow is modified by the presence of a ground plane a t  a height h 
below the 0rifice.t It might be possible, although no doubt extremely laborious, to 
make such a calculation; however, one further simplification of the model makes the 
calculation completely elementary. 

The requisite simplification is to  solve just the corresponding two-dimensional 
problem. The two-dimensional Borda-mouthpiece flow is well known (Lamb 1932, 
p. 96); the corresponding shape of free streamline (on which the fluid speed takes the 
constant value U )  is t,hat marked ‘ 00 ’  in figure 3. The corresponding free-streamline 
shapes (calculated in $ 3) are also given for four finite values of the ratio h/s of height 
above ground to semi-span (the lowest of these, 0.6, represents something like a typical 
lower limit for practical values of h/s).  Furthermore, figure 4 plots the ratio C, defined 
in equation ( 8 ) ,  as a function of h/s  for this two-dimensional model. 

The philosophy behind this extra simplification is that noted earlier: such a ratio 
C, between induced powers with and without ground effect may be indicated fairly 
reliably if one and the same simple model is evaluated in both cases. Actually, however, 
even the absolute value of power-weight ratio without ground effect is unaffected by 
the simplification; i t  is still gU in the two-dimensional case. That is because all the 
results (1) to ( 7 )  still hold in the two-dimensional case provided that the letters W ,  S, A 
and Q stand for values of weight supported, orifice area, jet area, and volume flow ‘per 
unit breadth perpendicular to the paper ’. It should, on the ot.her hand, be noted that, 
where equation (3) making the cont>raction ratio fr implied a diameter contracting by 
J ( 3 )  = 0.707 in axisymmetrical flow, t,he same area cont,raction in two-dimensional 
flow (curve marked ‘00 ’  in figure 3) involves of course a halving of the diameter. (On 
the other hand, no simple relationship exists between other aspects of a two-dimen- 
sional flow and the corresponding axisymmetric flow.) 

t From this point onwards (with bhe concentration upon ‘mouthpiece ’ flows established) the 
word ‘orifice’ is used in preference to ‘disk’ for the location where the increase in total head by 
&pU2 t,akes place. 
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FIGURE 3. Calculated free streamlines in the two-dimensional model corresponc..ng to that of 
figure 2, both without ground effect (curve marked ‘a’) and with ground effect for four different 
values of the ratio h/s  of height above ground to half-orifice width. 

I I I I 1 

0.5 1 .o 1 .s 2.0 7.5 
h f s  

FIGURE 4. The induced power coefficient defined in equation (8), as a function of the ratio h/s  of 
height above ground to half-orifice width. Experimental points : helicopter data (Zbrozek 1950) 
for different values of the ratio ‘thrust coefficient to solidity’: A, 0.025; x , 0.05; 0, G.1. 

The experimental points on figure 4, taken from Zbrozek (1950) for helicopters, 
indicate that the model, besides being aerodynamically self-consistent, epresents the 
data about as well as any other single curve of C, against h/s could do. A more refined 
model (for example, an extension of the R a p e r  (1979) vortex-ring model for hovering 
animals) would, of course, necessarily take other variables into account. 

Interpreting physically the results in figures 3 and 4, we come across an apparent 
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FIGURE 5. This figure illustrates just half of the two-dimensional model, for which the vertical 
A D  is a line of symmetry. The line CD represents the ground and the curve BC the free strearn- 
line. To make the theory aerodynamically self-consistent, an artificial boundary BF is intro- 
duced as in figure 2. Its continuation PA’ is on a different sheet S, of the Riemann surface from 
the main sheet S ,  on which the interaction of the slipstream wit,h the ground takes place. 

paradox, as follows. The classical theory ofequations (1) to (7)  associates the factor & in 
the area contraction (3)  with a corresponding factor 4 in expression (7)  for P,/W 
(induced power per unit weight supported).? Including the ground reduces Pi/ W by 
the additional factor Cp < 1; yet, paradoxically, the minimum cross-section of the jet 
is not so much reduced as in the case without ground. 

The apparent paradox is resolved as follows. Without ground, the jet has minimum 
area A where it has already become straight and uniform; this leads to equation (4) 
relating that area to the weight supported. By contrast, ground effect causes the jet 
to  reach its most contracted configuration where i t  is by no means uniform. There, 
streamline curvature requires pressures in the centre of the jet to  be in excess of 
ambient values; accordingly, the fluid speed q is less than its free-streamline value U .  
In  this case, the combined pressure force and momentum flux require a greater cross- 
section to achieve weight support than before; on the other hand, the substantially 

t For PJ W ,  by (1)  and (6) ,  is &/S,  which, if (5) were true with A as the jet’s minimum area, 
would be U ( A / S ) ;  where, furthermore, U IS fixed as (2WlpS) t  by (1)  and (2).  
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lowered fluid speeds q reduce the volume flux Q more than the greater cross-section 
increases it; and the induced power (6) falls by the same amount. For a precise mathe- 
matical form of this argument, see the end of $ 3 .  

3. Details of the model 
This final section, indeed, is devoted entirely to  putting mathematical details on 

record. The two-dimensional flow field of our model (figure 5) is symmetrical about the 
line A D .  Accordingly, it is sufficient to  calculate the flow on (say) the lefbhand side of 
A D ,  illustrated in figure 5. Here, A D  itself is a dividing streamline, in which the 
velocity rises from very low values far from the orifice (at A )  to  a maximum a t  E and 
then falls to zero a t  the stagnation point D.  The curve BC is a free streamline on which 
the pressures are simply hydrostatic. Since the flow is taken to be steady and irrota- 
tional, this implies that the fluid speed q takes a constant value U on the free streamline 
BC. The line C D  represents the horizontal ground over which hovering takes place. 

The fluid which is sucked into the orifice comes from a region bounded by the central 
streamline AE and by our artificially introduced boundary B F .  As explained in 4 2, 
some such artificially introduced boundary is needed in order that the flow of fluid 
drawn towards the orifice will not interfere with the hydrostatic conditions adjacent 
to the free streamline BC. The most important consideration dictating the choice of 
artificial boundary is that a vertical solid boundary introduced a t  B F  cannot impart 
any net vertical force to the fluid (or, indeed, any force at all since the horizontal force 
between it  and the fluid is cancelled by the equal and opposite horizontal force a t  its 
mirror image in the line of symmetry AD) .  Therefore, there is no disturbance to  the 
model's basic assumption; the only force applied to the fluid is that associated with 
a uniform pressure difference +pU2 (equation (2)) applied right across the orifice. 
Furthermore, the irrotationality of the motion is unaffected by this uniform increase in 
total head, except of course that the free streamline BC, as a surface of discontinuity 
between flow with that increased total head and stagnant fluid without it, is a vortex 
sheet. 

The main effect of the artificial boundary B F  on the properties of the jet must arise 
from its shape near B where the flow accelerates towards velocity U and the pressure 
drops below ambient pressure. That is where i t  is important for the artificial boundary 
to be vertical, so that i t  does not act on the jet with any net suction force. Beyond F, 
it is hardly important which shape we choose. 

For the mathematical model, however, a particular mathematical concept suggests 
a continuation of the artificial boundary beyond F which is highly convenient for 
calculation purposes and, also, admirably avoids interference between the low-head 
flow moving towards the orifice and the high-head jet bounded by the free streamline 
BC. Briefly, we are able in the mathematical model to  put those two flows on different 
sheets (S,  and 8,) of a Riemann surface ! The dotted line FA'  in figure 5 shows the 
continuation of the artificial boundary B F  on to  a second sheet S2 of the Riemann 
surface. Then flow enters the half-orifice a t  BE having been drawn from a wide expanse 
of low-head fluid in S,, filling all space to  the left of BA' and A E .  I ts  head is increased by 
i p U 2  a t  BE, and thereafter it flows on the sheet S, which is where the presence of the 
ground CD can interfere with the jet motion. 

It is important to notice that there is nothing unphysical about a solution of the two- 
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FIUURE 6. Auxiliary domains onto which the z-domain of figure 5 is mapped: (a) the w-domain, 
for which the mapping is the complex potential w(z)  ; (6) the [-domain, for which the mapping 
is the complex velocity [ ( z )  ; ( c )  the 2-domain, which is simply the upper half 2-plane. 

dimensional Laplace equation on such a Riemann surface. A quite simple physical 
model of such solutions makes this clear. 

In  this, we recognize the two-dimensional Laplace equation as correctly describing 
the flow between two parallel planes, a t  each of which slip is allowed, a distance S 
apart. We interpret our solution in this sense on sheet S,. However, in the transition to 
sheet S, (around the point F on figure 5 ,  together with all points to the left of it) the 
model allows the central surface of the flow region to be warped gradually from its 
original plane configuration, and to continue to diverge from it until it  reaches a new 
(and parallel) plane configuration S, a distance S (or more) away. This distance is 
sufficient so that the flow in sheet S, will not meet the flow in 8,. Where the warping of 
the central surface is occurring, however, the sheet of fluid remains of constant thick- 
ness 6. Then, if the warping is gradual enough, the flow in such a channel (of uniform 
cross-section) continues to satisfy Laplace’s equation. Furthermore, this physical 
model of our flow field does, in the limit as S --f 0, become geometrically a Riemann 
surface.t 

t Yet another physical model would be exactly as above but with no slip at the walls. The 
theory of the Hele-Shaw apparatus shows that this, too, is a flow field satisfying Laplace’s 
equation within a region whose geometry is that of our required Riemann surface. 
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With this model for our Riemann surface it seems physically reasonable to allow the 
fluid sucked into the orifice to come from all parts of S2 to the left of BA’. Pu’ote, in 
particular, that the change expected from a more ‘natural’ model, which allows no 
flow from any such parts below the level of F ,  is likely to  be small as far as the flow in 
S, is concerned. I n  the meantime, the actual model chosen has the strong advantage of 
avoiding any disturbance to  the balance of vertical forces. Also, the configuration of the 
free streamline in 8, should be only minimally influenced by the presence, on the 
different sheet S,, of the artificially introduced boundary. 

From the mathematical model we wish to  relate the half-flux t Q  (volume flow of 
fluid through the half-orifice, per unit breadth ‘ perpendicular to  the paper ’) to the half- 
orifice’s width s and its height h above ground. To this end we use a complex potential 
w whose imaginary part $ (the stream function) has boundary values @ = 0 on the 
streamline A‘FBC and @ = 4Q on the streamIine AEDC. The analytic function w(z) 
maps the z-domain of figure 5 into the w-domain of figure 6(a ) ,  bounded by the 
parallel lines @ = 0 and @ = 4Q. The real part of w (the velocity potential 9) is made 
definite by requiring that # = 0 a t  the orifice lip B. 

As in free-streamline problems generally, it is important to study also the analytic 
function dw/dz  = [ ( z ) :  the complex velocity. This has modulus 161 equal to the fluid 
speed q, and argument arg 6 equal to  - 8, where 0 is the direction of fluid flow. There- 
fore, [ ( z )  maps the z-domain onto the [:domain of figure 6 (b ) .  Here, the free streamline 
BC, on which q = U ,  becomes an arc of the circle 151 = U .  The ‘artificial’ boundary 
A‘FB,  on which the flow direction 6’ is + an, becomes the radius arg [ = - an. On the 
line of symmetry AED,  the flow direction 8 is - +n, but the greatest speed attained is 
necessarily less than U ,  so that A E D  becomes just part of the radius arg[ = +in. 
Finally, the streamline DC along the ground from the stagnation point D becomes the 
radius arg [ = n. 

We introduce one more auxiliary complex variable 2, defined by the exponential 
mapping 

This mapping is used because it yields an  extremely simple 2-domain: just the upper 
half of the 2-plane, as in figure 6 (c). This point B where w = 0 maps into the origin 
Z = 0, while the points A and A’ where w = -00 correspond to  2 = - 1. The point C 
where w = + 00 becomes the ‘point a t  infinity’ in the 2-domain. The position of the 
point D in the 2-domain is a p i o r i  unknown, but must be to  the left of A. We,take 
Z = - c  at the point D,  and will find that c > 1 is the principal parameter in our 
solution, in terms of which all other non-dimensional qualities are derived. 

Classical methodst allow us to determine uniquely the mapping of the upper half 
2-plane onto’ the [-domain of figure 6 (b) ,  with the points C, D,  A and B in the two 
figures corresponding (but with the positions of E in both unrestricted). We obtain 

2 = e2nwlQ- 1. (9) 

2 8 - i  zi-ict i 
(10) 

dw - = [ = [- u-)[-] . 
dz zB+i z*+id 

Here, Z* is the branch of the square root within the 2-domain that is positive for 2 > 0, 
giving 161 = U on the free streamline CD. This branch of 2 4  is pure imaginary for 
2 < 0 ,  with positive imaginary part. Accordingly, the square bracket in (10) is positive 
for 2 < - c ;  and we take its square root, similarly, as the branch positive for 2 < - c. 

t For example, the Schwarz-Christoffel method applied to the variable log 5. 
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As required, then, c is negative for Z < - c, and varies from 0 t o  - U as Z goes from 
- c to - 00. Where - c < Z < 0, on the other hand, the square bracket in (10) becomes 
negative, while the branch of its squa,re root that  is positive for Z < - c becomes pure 
imaginary, with negative imaginary part. That is why equation (10) makes arg < equal 
to  + i n  for - -c  < Z < - 1, and to - 4;. for - 1 c Z < 0 (where the term in curly 
brackets is positive). 

The relationship of the half-orifice width s and the height above ground h to the 
fluid-dynamic parameters U and Q is determined by calculating the complex variable 
x = x + i y  representing the position co-ordinates (x, y) of a point on the boundary of the 
z-domain. From equations (9) and (10) we have 

The integration in (1 1) can be carried out in terms of elementary functions, as 

1 Q (. c*+ 2 ~ -  1 log [ (Z+c)i+ (C - i))+Z*- i 
Z = - %  

(c- 1)) ( Z + c ) + - ( c - l ) t + Z t - i  

- log [ (Z + c)$ + ZQ] - (z+c)8 1 +constant. (12) 
(C+ - 1)  (2, - i )  

The reader may check this statement by differentiating (12) with respect to  Z and 
retrieving Q/[Znc(Z + l)] with 5 given by (10). I n  (12), the square root (2 + c)* is taken 
positive for Z > - C ;  so that i t  becomes pure imaginary, with positive imaginary part, 
where 2 < -c  (on the ground CD). 

We can relate the half-orifice width s to the other parameters by considering the 
singular behaviour of (12) a t  Z = - 1 ,  corresponding to the change from A' to A. TWO 
terms in (12) are singular at Z = - 1. The last term in curly brackets becomes infinite 
as Z -+ - 1 either from above or below, but i t  is pure imaginary, tending respectively to  
- ico or + ico in these two cases. That corresponds to the positions of A' and A in the 
z-domain of figure 5 .  At the same time the denominator of the logarithm on the first 
line of (12) becomes zero. Admittedly, it is unimportant that the real part of the 
logarithm therefore tends to  infinity, because i t  is multiplied by a pure imaginary 
factor; once again, then, only the imaginary part of z is thereby given a component 
tending to infinity (indeed, very slowly so that the previous singular term dominates). 
The important consideration is tha,t the logarithm changes by ( -mi) between A' and 
A ,  as the singularity Z = - 1, where the denominator inside the logarithm vanishes, is 
half-encircled in the positive sense. This specifies the half-orifice width s (change in the 
real part of z )  as 

Q c++2c-1  
u (c- 1)4 * 

s = -  (131 

An interesting check on equation (13) is obtained if we calculate the force F acting 
(per unit breadth perpendicular to the paper) upon the half-ground CD to the left of 
the line of symmetry. We obtain this as the integral from C to D of the steady-flow 

expression P = &p( V - q Z )  (14) 

for the excess pressure (excess over hydrostatic). This gives 
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where (1 1)  has been used to write the expression as an integral with respect to 2. The 
integral (15) is readily calculated from (10) as 

cg+2c-  1 
(c- l)t * 

F = BpQU 

By (13), this makes the force P acting between the half-ground and the fluid equal to 

F = *pU% = gw; (17) 

namely, the downward force +W (again, per unit breadth) exerted over the half- 
orifice width s by the pressure jump &pU2. This agrees with the need for those two 
forces to balance, resulting from the fact that the rate of change of vertical fluid 
momentum is zero. 

The induced power exerted over the full orifice width 2s) per unit breadth per- 
pendicular to the paper, is equal to the pressure jump +pU2 times the volume flux Q ,  
as in equation (6).  The induced-power coefficient C, is defined by (8) as the ratio of this 
induced power to its value BU W given in the absence of ground effect by equation (7). 
Therefore, by (17) and (13), 

Equation (18) confirms that ground effect reduces induced power, by a factor C, < 1 
which depends only on the parameter c.  

Now we determine the height h of the orifice above ground, in order to relate this 
parameter c to the ratio h/s. We calculate h from (12) as 

h = [1mz]0+, + (z). 
Here, the first term is the change in y (the imaginary part of x )  along the free streamline 
CB. The height of the jet at  C ,  carrying flux +Q a t  speed U ,  is given by the second term. 
(This value, obvious physically, could also be calculated from (12)) where the logarithm 
on the second line changes a t  the ‘point at  infinity’ C by (-8ni) from Z = -m to 

To calculate the first term in (19) we note that as Z 3 + cx) the whole expression in 
curly brackets in (12) becomes purely real. In  fact, the first term tends to zero aa 
2 --f +a; the second term is real for all 2 > 0 (and tends to -03 as 2 -+ +a, corre- 
sponding to the free streamline’s indefinite extension to the left); while the third term 
tends to a real constant as 2 -+ + co. Therefore, the change in Im z between + 03 and 0 
can be obtained by writing down the expression in curly brackets in (12) at Z = 0, 
giving 

2 = +Co.) 

This formula is readily simplified to 

Q cQ+2c-1 C* 

nu (c- 1)) c t -  1 
h = - - (  log [c, + (c - 1)4 - - + *n). 
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FIGURE 7. Two classical free-streamline flows : (a )  two-dimensional Borda-mouthpiece flow; 
(6) impact of a jet on a wall. Note: in both cases the vertical line on the right (AE or ED) 
is the line of symmetry of the pattern. Broken lines: an arbitrary length of parallel jet may be 
used to join up these two flows into a limiting form of t'he model in figure 3 for large h/s .  

The height-width ratio h/s of the half-orifice is shown by (21) and (13) to take the form 

depending only upon c. Accordingly, equation (18) allows the induced-power coefficient 
C, to be determined as the function of h/s  given in figure 4. 

Similarly, the form of the free streamline BC can be plotted as in figure 3 for four 
different values of h/s (equal to  0.6, 1.0, 1.4 and 1.8; these correspond to c = 10.12, 
68-2,624 and 6855 respectively). This is done by using (12) with 0 < 2 < 00 to  trace the 
variation of z = x + iy along the free streamline. Actually, figure 3 plots the variation of 

accordingly, all the different free-streamline shapes in figure 3 start from the same 
point B (where Z = 0 so that (23) vanishes), and correspond to the same half-orifice 
width s (but to different values of the height h above ground). 

For h/s taking a large value such a~s 3, or any greater value, the free-streamline shape 
is indistinguishable on the scale of figure 3 from a combination of two classical free- 
streamline flows (figure 7).  These are the two-dimensional Borda-mouthpiece flow (see 

EZ/SIOZ; (23) 
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B D 
E 

C D 
( b )  

FIUURE 8. The 5-domains corresponding to the two classical free-streamline flows of figure 7. 

also the curve marked as ‘00’ on figure 3) forming a vertical jet at E,  and the flow due 
to the impact of such a two-dimensional vertical jet E upon the horizontal ground at  D. 
For these large values of hls, the presence of the ground does not affect the induced 
power (so that C, = 1). 

Mathematically, we can see why the present solutions tend to the above limiting 
form by inspecting the c-domains (figure 8) for those two classical flows. The case 
h/a 2 3 corresponds to extremely large values of c >, 107. In  the limit of large c ,  
however, the corresponding [-domain in figure 6 ( b )  becomes more and more a com- 
bination of those in figure 8 as E moves up closer to the circular boundary. Further- 
more, the mapping of that [-domain onto the 2-domain degenerates in two different 
parts of the 2-domain into the different mappings appropriate to figures 8 (a )  and 8 (b ) .  

In  fact, where 2 remains of order 1 as c + co, equation (10) becomes 

2 4 - i  r;=iu- 
dz 2++i’ 
dw - =  

which maps the upper half 2-plane onto the semicircle of figure 8 (a )  with Z = - 1 and 
2 = 0 corresponding to A and B (and 2 = co to E ) .  Equation (24) represents the 
Borda-mouthpiece flow without ground effect; the corresponding form of z is calcu- 
lated from (1 1) m 

- i log (24 - i) - - + constant, 
24-2 

and this is seen to be equivalent to a limiting form of (12) as c -f co for fixed 2. 
By contrast, when 2/c remains fixed as c -+ 00, equation (10) becomes 
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which maps the upper half Z-plane onto the quadrant of figure 8 ( b )  with Z = - c and 
2 = 0 corresponding to D and E (and 2 = 00 to C ) .  Equation (26) represents the 
impact of a jet on the ground; the corresponding form of z is found from (1  1)  (where, 
however, Z + 1 is to be replaced by Z since Z is of order c) as 

and this is seen to be equivalent to a limiting form of ( 1 2 )  as c + oc) for fixed Z / c .  
On the other hand, for more moderate values of c,  there is no separation of the jet 

into a contracting portion (figure 7 a )  and an expanding portion (figure 7 b ) .  The two 
portions merge, so that the contraction is by no means completed by the time that the 
expansion begins. This leads to the 'apparent paradox' mentioned at the end of tj 2: 
the minimum jet cross-section is not so much reduced as in the case without ground, 
even though in the latter case the flux Q is greater. 

We now conclude by probing this apparent paradox a little further. We start from a 
balance of the supported weight W against the combinedpressure force and momentum 
flux acting at  the jet's narrowest cross-section, which we continue to denote by A as in 
the classical case of figure 1.  This gives, to a close approximation, 

r 

both in the axisymmetric and two-dimensional cases (provided that, in the latter case, 
quantities like Wand A are taken as values per unit breadth). The only approximation 
involved in (28) is that the fluid's speed q has been written instead of the downward 
component of fluid velocity, but the error is likely to be small a t  the jet's minimum 
cross-section. By (14), equation (28) can be re-written as 

r 

Now, as h / s  progressively decreases, the streamline curvatures at cross-section A 
become greater, leading to enhanced excess pressure p ,  and reduced fluid speeds q in 
the centre of the jet. Equation (29) means therefore that the area A necessary to 
support the weight W progressively increases. 

On the other hand, the arithmetic mean inside the integral (29) exceeds the corre- 
sponding geometric mean pUq,  and by a larger margin the greater is the ratio U / q .  
This implies that the volume flux 

[where the approximate equality should be at least as accurate as (ZS)] has two 
properties: (i) it  is less than W / p U  (the value which it takes in the absence of ground); 
(ii) it becomes less by a larger margin as h/s  decreases. It follows that we should regard 
the progressive reduction in volume flux (and so also in induced power) as associated 
naturally (not 'paradoxically ') with the progressive increase in minimum jet cross- 
section as height above ground decreases. 
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Plate 1 

FIGURE 1. Centre sectioi~ of the fluid colnmn with laminar axisymmetric Taylor vortices in 
silicone oil a t  T = 1.1GT, with h = 2.13. Narrow gap. Tho heavy dark lines are the sinks, the 
location uf inward fluid motion. Tlic fin0 dark lirios aro the sourcos, the location of outward fluid 
motion. 

KOGCHMIEDER, (Facing p .  538) 



Plate 3 

J!’l(;u IW 2. (‘twtre strctiori of the fluid column with laminar doubly periodic Taylor vortices in 
water in the narrow gap. T = X.49TC, h = 2.60, six azimuthal waves. 



Journal of Plicid Mwhan ics ,  1'01. 93, port 3 Plate 3 

FIGU~LE 4. Centre sx t ion  of h i d  column at T = 130Tc with maximal wavolongth h = 3.395 and 
two twimutlial waxws, after a steady :tccolorat ion cxporimont. Transition to  turbulencu with 
trniisiont distiirlmncos of' tlle flow. 



Plate 1 

Y I G T ~ I ~  5 .  C'ontre section of column of turbulent axisymmetric Taylor vortices in water at 
T = 3800Tc, h = 3.395. In narrow gap after a steady acceIerat,ion experiment. The equally spaced 
horizontal lirios at which the flow convorgos aro tlie sinks. The sources are diffuse. Each ring 
represcmts a vortex pair. 



Plntr 5 

FIGURE 0. ('ontre section of column of stcatly doubly pcwodic turbulent Taylor rortices aftchr a 
sudden start, two azirnutlial waves. 7' = 293T,, A = 2.84, in wstrr \\.it11 narrow gap. 



FIGURE 7. Chaotic turbulont flow arriving a t  the oiltor glass cylinder 0 . 5 s  after 
sudden start at T = lGGOT,. 1 1 1  \\-ater witli tho narrow gap. 



Plate 7 

FI<+LJRE 8. C'entro section of coluirm of tiirbulcnt axisyinmotric Taylor vortices in steady stato 
after a sudden start at 2' = l625Tc. h = 2.396, narrow gap. 
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FIGURE 10. Dernonstration of t h o  non-iniiquenuss of turbulent, axisyminct>ric Taylor vortex flow 
in the narrow gap at  %' = 1650Tc. Left steady accolcration exporirncnt, witli h = 3.395, right 
s h a d y  st'ate aftcr suddcri start at tlic saint) Taylor riiiinber witli tlie saint: fluid (wat'or), h = 2,396. 

KOSCHMIEDEK 


